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SUMMARY

Structural studies of large proteins and protein
assemblies are a difficult and pressing chal-
lenge in molecular biology. Experiments often
yield only low-resolution or sparse data that
are not sufficient to fully determine atomistic
structures. We have developed a general geom-
etry-based algorithm that efficiently samples
conformational space under constraints im-
posed by low-resolution density maps obtained
from electron microscopy or X-ray crystallogra-
phy experiments. A deformable elastic network
(DEN) is used to restrain the sampling to prior
knowledge of an approximate structure. The
DEN restraints dramatically reduce over fitting,
especially at low resolution. Crossvalidation is
used to optimally weight the structural informa-
tion and experimental data. Our algorithm is
robust even for noise-added density maps
and has a large radius of convergence for our
test case. The DEN restraints can also be
used to enhance reciprocal space simulated
annealing refinement.

INTRODUCTION

Many experiments on biomolecules only yield low-

resolution or sparse structural data, for example, electron

cryo-microscopy, small-angle X-ray scattering (SAXS), or

fluorescence resonance energy transfer (FRET) measure-

ments. Such data are usually insufficient to completely

define the structure of a macromolecule. Even for macro-

molecular X-ray crystallography and NMR experiments,

the structure determination problem is often underdeter-

mined, which means the number of parameters exceeds

the number of independent experimental observations. It

is therefore common to use prior knowledge to provide

the missing information needed to reduce over fitting the

data. This is typically done by using a molecular mechan-
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ics energy function together with the experimental data

combined in a hybrid energy function for the structure re-

finement (Jack and Levitt, 1978) to restrain local geometric

quantities such as bond lengths, bond angles, and planar-

ity, which are sequence and conformation independent

and are therefore known a priori. However, for low-resolu-

tion data, such general information is insufficient to

uniquely determine the structure, and it needs to be com-

plemented by other knowledge about the specific macro-

molecule. This additional structural knowledge could

come from a homology model or from a known structure

of the same molecule in a different conformation. Here,

we assume that all prior structural knowledge is repre-

sented by this initial structure. The main task is then to op-

timally combine the initial structure with the experimental

data. In this work, we focus on low-resolution density

maps obtained from electron microscopy or X-ray crystal-

lography, although the approach presented is general

enough to handle many types of experimental structural

data.

For density maps obtained from X-ray crystallography

or electron microscopy, the over-fitting problem has

been addressed before in various different ways, mostly

by reducing the dimensionality of the refinement problem.

Manual decomposition into domains was used together

with subsequent rigid body fitting into an electron density

map (Rossmann et al., 2005; Gao and Frank, 2005; Fa-

biola and Chapman, 2005). For rigid body fitting into den-

sity maps, a number of programs (Wriggers et al., 1999;

Roseman, 2000; Rossmann, 2000; Chacon and Wriggers,

2002; Volkmann and Hanein, 1999; Wu et al., 2003; Rath

et al., 2003; Ceulemans and Russell, 2004; Ritchie,

2005; Goddard et al., 2007; Dror et al., 2007) have been

developed. A flexible docking approach has been devel-

oped in combination with the Situs program, which de-

fines representative points in the protein and in the density

map, and from a correspondence between these points,

restraints were derived to be used in molecular dynamics

simulation (Wriggers et al., 2004). Molecular dynamics

simulations have also been combined directly with real-

space refinement (RSRef/X-PLOR:RSMD) (Chen et al.,

1999, 2003), but for low-resolution density maps, the rigid
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Please cite this article in press as: Schröder et al., Combining Efficient Conformational Sampling with a Deformable Elastic Network Model
Facilitates Structure Refinement at Low Resolution, Structure (2007), doi:10.1016/j.str.2007.09.021
domains still need to be defined manually. Low-frequency

normal modes of an elastic network model (Tirion, 1996)

have been proposed (Delarue and Dumas, 2004; Suhre

et al., 2006; Tama et al., 2004) and used (Hinsen et al.,

2005; Mitra et al., 2005; Falke et al., 2005) to guide global

conformational changes during fitting of protein structures

to low-resolution electron density maps. A small number

of low-frequency normal modes were also used to im-

prove structure refinement in X-ray crystallography (Dia-

mond, 1990; Kidera and Go, 1990; Poon et al., 2007)

and in particular enhancing the molecular replacement

technique (Suhre and Sanejouand, 2004). Another recent

method combines comparative modeling and density fit-

ting to improve the sequence alignment and obtain better

homology models (Topf et al., 2006). For dimensionality-

reducing methods in general, it seems reasonable to use

only collective low-frequency degrees of freedom to fit

a structure into a low-resolution density map since the

map determines only global rearrangements rather than

local structural changes. However, in general, it is not ap-

parent which degrees of freedom are to be constrained

and which are to be released. An increasing number of

low-resolution (i.e., 3.5–4.5 Å resolution) X-ray crystal

structures have been solved and refined (Brunger, 2005;

DeLaBarre and Brunger, 2006). However, the process of

interpreting low-resolution electron density maps is diffi-

cult and highly subjective. A more objective method is

required that takes into account already known structural

information.

Here, we present a new method in order to take previ-

ously determined structures into account. The rationale

behind our approach is to adapt only those degrees of

freedom for which the density map actually provides infor-

mation and to keep all other degrees of freedom as close

to the initial structure as possible. Crossvalidation is used

to determine the optimum degree of adaptation (or relative

weighting of experimental data and restraints) to prevent

over fitting. We use a deformable elastic network (DEN)

as a restraining potential, defined so that at the beginning

of the refinement process, the network has its minimum at

the initial structure. A very efficient geometry-based con-

formational sampling algorithm is extended to generate

a structural ensemble that is biased by both the restraining

potential as well as by the particular density map. It is crit-

ical to make this elastic network potential deformable and

to carefully adapt it to fit the density map during the refine-

ment simulation. Our DEN approach is devised to deform

the elastic network only along those degrees of freedom

that are strongly influenced by the density map. For all

other degrees of freedom, the elastic network potential re-

mains unchanged and keeps the model close to the initial

structure. An important feature of this approach is that

there is no need to manually select which degrees of free-

dom are constrained and which are left free: the elastic

network deforms itself to trade off between the initial

structure and the density map. In this way, the dimension-

ality of the system is not reduced; in principle each confor-

mation could potentially be visited. The extent of deforma-

tion is controlled by a single parameter g, for which we
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show that an optimal value can be estimated by use of

crossvalidation.

In contrast to high-resolution X-ray crystallography,

which completely defines a structure, low-resolution

data from X-ray crystallography or electron microscopy

only provide information about a certain region in confor-

mational space that contains the correct structure. To as-

sess the complete information content of the density map,

one needs to find in principle the largest ensemble of

structures that fit the map. The objective is, thus, not

only to find a single best-fitting structure, but rather to

determine an ensemble of structures. Our conformational

sampling approach allows exploration of a conformational

space that fits an experimental low-resolution density

map and, thus, yields a whole ensemble of possible solu-

tions. The combined use of the sampling algorithm and

the DEN method therefore prevents that the ensemble of

possible solution structures contains over fitted and there-

fore unlikely structures. This approach is implemented in

our program DireX.

In this paper, our method is tested with the Ribose-bind-

ing protein, for which several structures have been solved

by X-ray crystallography (Bjorkman et al., 1994; Bjorkman

and Mowbray, 1998) and which is known to undergo

a large conformational change upon ligand binding. Start-

ing from an ‘‘open’’ conformation, the goal is to find the

‘‘closed’’ conformation by using synthetic density maps

computed from the closed conformation at increasingly

lower resolutions. We find that our approach is superior

to simple rigid-domain fitting. Because of its large radius

of convergence and noise-robustness for our test case,

we expect our method to be useful in numerous low-res-

olution structure solution or refinement applications. We

also show that DEN restraints can also be implemented

in simulated annealing refinement in reciprocal space,

enhancing the convergence of the refinement.

RESULTS AND DISCUSSION

Sampling of Electron Density Maps without any
Elastic Network
To obtain a control for comparison to our DEN approach,

we first applied our conformational sampling algorithm as

a ‘‘free’’ refinement, i.e., without using DEN restraints, but

maintaining local geometry, such as bond lengths and

bond angles. Synthetic density maps (our ‘‘experimental’’

data) were calculated from the closed conformation

(1URP) of the Ribose-binding protein (RBP) to dmin = 3,

4, 6, 8, 10, 15, and 20 Å resolution (Figure 1). Starting

from the open conformation (2DRI), 1000 steps of the

sampling algorithm were performed yielding a trajectory

of protein conformations. During the course of the sam-

pling simulation, the structure was pulled into the density

map to varying degrees. Overall, the structure became

more similar to the target structure, which is of course

known for this test case.

Figure 2A shows the all-atom root mean square devia-

tion (rmsd) from the target (closed) structure for the

density maps computed to different resolutions. In all
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Figure 1. Test Case for Sampling Simulations

The goal is to fit a target electron density map by smoothly deforming

a starting structure. The test structure is RBP consisting of 271 amino

acid residues for which two different structures have been solved by

X-ray crystallography in an open (PDB entry 2DRI, in orange) and

a closed (1URP, in green) conformation. The refinement starts from

the open conformation, which has a rmsd of 4.3 Å to the closed con-

formation. Synthetic density maps are calculated at different resolu-

tions (dmin = 3, 4, 6, 8 10, 15, and 20 Å) from the closed conformation

and used in our refinement approach as ‘‘experimental’’ data. The den-

sity map computed to dmin = 10 Å is shown in blue.

Figure 2. Sampling Simulations without and with DEN

Restraints

All-atom rmsd are computed with respect to the target (closed) confor-

mation of RBP for sampling simulations starting from the open confor-

mation and by using electron density maps computed at seven

different resolutions (dmin = 3, 4, 6, 8, 10, 15, and 20 Å). (A) Free sampling

simulation without DEN. (B) Sampling simulations using the DEN re-

straints with g = 0.8. With the DEN restraints, all simulations yielded

structures with rmsds below 1.5 Å (indicated by the gray shaded region).

Please cite this article in press as: Schröder et al., Combining Efficient Conformational Sampling with a Deformable Elastic Network Model
Facilitates Structure Refinement at Low Resolution, Structure (2007), doi:10.1016/j.str.2007.09.021

Structure

Structure Refinement at Low Resolution
simulations, the rmsd decreased within the first �30

steps, but did not converge to a stable value for any of

the simulations. Furthermore, none of the simulations

reached structures with an rmsd below 1.5 Å. The rmsd

increase that occurred after reaching a minimum value is

mainly due to a loss of local structure. This is quantified

by the percentage number of residues that maintain the

secondary structure of RBP; the number dropped from

an initial value of 76% down to a value between 32%

and 39%, i.e., about half of the secondary structure was

lost in these simulations. At low resolution, the density

maps clearly do not provide enough information about lo-

cal structural features; even the 3 Å density map was not

able to sufficiently stabilize the structure during the DireX

sampling simulations.

As a measure of how well the current model fits the ‘‘ex-

perimental’’ density map, we calculated the correlation

coefficient between the density map derived from the cur-

rent model and the target map (see Equation 1). During all

simulations, the map correlation was monotonically in-

creasing showing that the fit to the data was continuously

improving. As expected, the final map correlation, shown

in Table 1, is always higher than the map correlation of the

starting structure. In addition, the map correlation tends to

be higher for lower resolution. This general trend is due to

the fact that model errors have a smaller effect on low-res-

olution maps: to obtain a high map correlation at high res-
Structure 15, 1–
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olution, the model needs to be much closer to the correct

structure than at low resolution.

A general problem in real-space (and also in reciprocal-

space) refinement is that the density map information

alone is not well suited to move the model toward the cor-

rect structure; this is especially true at the beginning of the

refinement (Brunger et al., 1987). Only when the refine-

ment proceeds do the forces become more effective.

For example, for the free simulation with the density map

computed to dmin = 3 Å, the structure became heavily dis-

torted (resulting in physically unreasonable local geome-

try) before a good fit could be reached; the lowest rmsd

for the simulation at dmin = 3 Å is 1.69 Å, which is some-

what higher than the 1.47 Å rmsd for the simulation at

dmin = 4 Å (Figure 2A). As the map correlation, i.e., the fit

to the data, is improving even though the rmsd increased,

the data were being over fitted and so yielding unusable

structures. Application of the deformable elastic network

approach is able to overcome this problem, as is shown

in the following.
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Table 1. Map Correlation between Target and Model
Map for Density Maps Computed at Different
Resolutions Obtained from a Real-Space
Refinement Simulation with DireX

Map Resolution (Å) Map Correlation

dmin

Initial

Structure

Without

DEN (Free)

With DEN

(g = 0.8)

3 0.285 0.638 0.762

4 0.416 0.795 0.836

6 0.643 0.927 0.925

8 0.741 0.967 0.965

10 0.818 0.981 0.978

15 0.883 0.985 0.988

20 0.834 0.990 0.989
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Sampling with DEN
We performed the same simulations as described above,

but this time included the DEN restraints (see Experimen-

tal Procedures). Figure 2B shows the rmsd to the target

structure for density maps computed to different resolu-

tions, with g = 0.8, a good compromise at all density

map resolutions (discussed further below). Including the

DEN restraints has a dramatic and very significant change

of the sampling simulation process: for all density maps,

the rmsd drops quickly and converges to a constant pla-

teau value, which is, as expected, consistently better

(lower rmsd) for higher resolution density maps. The re-

sulting structures are much closer to the correct structure

than in the free simulations without the DEN. Specifically,

the sampling simulations at dmin = 3, 4, 6, 8, 10, and 15 Å

all yielded structures with rmsd value at or below 1.5 Å

(see shaded area in Figure 2B). Furthermore, the local

structure was very stable: the percentage number of res-

idues that maintain the secondary structure of RBP stays

between 72% and 76%, compared to 76% in the target

(closed) structure. The Ramachandran statistics depend

on the density map resolution: the number of residues in

the core region of the Ramachandran plot, as defined

by Procheck (Laskowski et al., 1993), decreased from

86% for simulations at dmin = 3 Å to 71% at dmin = 20 Å

resolution.

For computational efficiency, bond lengths and angles

are only approximately maintained by DireX. Conse-

quently, the corresponding differences to expected equi-

librium values are relatively large: 0.12 Å for bond lengths

and 0.24 Å for the distance intervals that restrain bond an-

gles. The choice of the width of these intervals is a trade off

between precision of coordinates and convergence speed

of the algorithm. In high-resolution refinements, those dis-

tance intervals could easily be further reduced requiring

more time for the algorithm to converge. A more efficient

approach is to refine the resulting structure with a conven-

tional method, such as reciprocal space minimization or

simulated annealing. To illustrate this, we further refined

the best structure obtained from the simulation at dmin =

3 Å by using the program crystallography and NMR sys-
4 Structure 15, 1–12, December 2007 ª2007 Elsevier Ltd All right
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tem (CNS) (Brunger et al., 1998) with the MLHL target

function, which refines against both amplitudes and phases

of the structure factors corresponding to the calculated

density map of RBP in the closed conformation. During

the course of the refinement, the free R value dropped

from 0.32 to 0.17, and the rmsd dropped from 0.68 Å to

0.20 Å. For comparison, starting the simulated annealing

refinement directly from the open conformation was not

successful and yielded a structure with an rmsd of 3.2 Å.

The initial rmsd decrease was fastest for the density

map calculated at dmin = 8 Å but slower for higher and

lower resolution maps (Figures 2A and 2B). The fact that

the rmsd decreases slower at low resolution can be under-

stood by the way the sampling method moves the atoms

into the density: the force that pulls an atom into the map is

proportional to the density values in its vicinity. As the

maps are normalized to have a mean value of zero and

a standard deviation of one, the maximum density values

are lower for low-resolution density maps. Therefore, also

the force on the atoms is smaller, which slows down the

convergence.

For higher-resolution maps, one could have expected

that the convergence would always be faster, as the ex-

perimental information content is higher and should po-

tentially provide better forces. The reason this is not the

case is that the density map at higher resolution is more

rugged and, thus, more and higher barriers need to be

crossed, slowing down the effective convergence speed.

We refer to this effect as the barrier effect. Due to this bar-

rier effect, higher-resolution sampling simulations may be

even more efficient if started at lower resolution before

switching to higher resolution after, say, 100 sampling

steps. A combination of the DEN approach and simulated

annealing may be able to overcome this problem (see

below).

The correlation coefficients between the density maps

computed from the final structures and the target maps,

shown in Table 1, are always higher than the respective

correlations at the beginning of the sampling simulation

(as also seen in the simulation with no DEN). For the

maps computed at dmin = 6 to 20 Å, the map correlations

obtained from the DEN simulations are very similar to

those from the free simulations. Interestingly, for the 3

and 4 Å maps the map correlations are significantly better

for the DEN simulations, 0.762 and 0.836, than for the free

simulations, 0.638 and 0.795, respectively. Thus, although

the DEN simulations impose more restraints onto the

structure, the fit to the data became better. This suggests

that the additional DEN restraints helped to find the

correct structure by guiding the fitting process and by

stabilizing the structure especially in the beginning of the

refinement.

Optimal Choice of the g Parameter
In the next step, we systematically varied the g parameter

values between 0 and 1 in steps of 0.l for all seven density

map resolutions, leading to a total of 77 simulations.

Figure 3 shows the average rmsd (< rmsd >) to the target

structure averaged over the last 500 steps, for each of
s reserved
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Figure 3. Effect of the g Value on the Sampling Simulations

For each of the seven density map resolutions, we performed a series

of eleven simulations with the g value (Equations 5 and 6) varying be-

tween 0 and 1 in steps of 0.1. All-atom rmsds are shown, averaged

over the last 500 steps of each refinement simulation (1000 steps total

each). The smallest rmsd value that can be achieved depends on the g

value. The optimum choice for g is different for different resolutions.
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these simulations. At g = 0, the DEN is not allowed to

change at all and therefore behaves like a regular (nonde-

formable) elastic network. All curves have a minimum at g

between 0.7 and 0.9. The initial decrease of < rmsd > is

due to the fact that increasing g allows the DEN, and

therefore also the structure itself, to adapt better to the

forces imposed by the electron density. At the same

time, the influence of the initial structure is weakened.

For very large g values, almost no information from the

initial structure is used; the target density maps were

over fitted, resulting in an rmsd increase for all values of

dmin. In the extreme case of g = 1.0, none of the simula-

tions converged within 1000 simulation steps, so that after

a short initial decrease all < rmsd > values were constantly

increasing in a similar manner seen for the free simulation

without the DEN (Figure 2A). In this case, there were no re-

straints present toward the initial structure, and the DEN

could potentially deform to any point in conformational

space. The ensemble obtained for g = 1.0 should therefore

eventually convergence to the ensemble that is obtained

from the free simulation without the DEN.

Obviously, the optimal choice of the g parameter should

yield a minimal < rmsd >. However, in a real application,

one would of course not know the correct structure, and

the < rmsd >, therefore, cannot be used as a suitable

criterion for the choice of g. We will use crossvalidation

instead to estimate the optimal value for g.

Crossvalidation
The general statement that a structure is better if the fit to

the experimental data is better is only true when the data
Structure 15, 1–
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fully determine the structure. In the case of low-resolution

data, where the number of parameters (coordinates of the

macromolecular structure) exceeds the number of inde-

pendent experimental observations, the structure deter-

mination problem is underdetermined and over fitting the

data can severely corrupt the structure. The goal, there-

fore, is to refine a structure just to the point where over

fitting sets in. To detect and prevent over fitting of exper-

imental data, the concept of crossvalidation has been

introduced to structure determination (Brunger, 1992).

To crossvalidate the obtained structures, we generated

synthetic structure factors from the closed conformation

of RBP and randomly selected 10% of the structure fac-

tors, which were defined as the ‘‘test set’’ and were omit-

ted from the calculation of the target density map. There-

fore, only the remaining structure factors, which form the

‘‘working set,’’ are used for structure refinement. The

structure factors from the test set are then used to calcu-

late the free R value, which quantifies the fit to the omitted

data and is used to detect over fitting. The DEN restraints

are used to prevent over fitting, and the parameter g takes

on the role of controlling the degree of fitting the data. The

optimal choice of g should yield a minimum free R value.

A series of refinement calculations were performed with

the crossvalidated density maps at 7 different resolutions

(dmin = 3, 4, 6, 8, 10, 15, 20 Å) and 11 different g values,

from 0 to 1 in steps of 0.1, resulting in 77 additional inde-

pendent simulations. Figure 4A shows < rmsd >, the rmsd

of each simulation averaged over the last 500 steps. The

best structures obtained for the sampling simulations at

dmin = 3, 4, 6, 8, and 10 Å resolution all reached < rmsd >

values below 1.5 Å. In comparison to the simulations with-

out crossvalidation (Figure 3), reducing the data set for

crossvalidation does affect the resulting structures, but

the impact is rather small for the high-resolution maps:

the best < rmsd > for the 3 and 4 Å maps were shifted

by only +3% and�11%, respectively. Note that the effect

is larger for the lower-resolution maps: the best rmsd for

the 15 and 20 Å maps are shifted by +61% and +42%,

respectively.

We described above the barrier-effect typified by the

higher values of < rmsd > for the simulation at dmin = 3 Å

resolution compared to that at 4 Å or 6 Å (Figure 3). This

effect is even more pronounced in Figure 4A: the 3 Å

curve starts much higher for small g values than in Figure 3

but still reaches a similar low rmsd for high g values. This

suggests that the modification of the data set for cross-

validation has not changed the position of the minimum

of Er but has increased the energy barriers on the path

toward the minimum.

Figure 4B shows the corresponding free R values. The

minimum of the free R value should ideally be at a g value,

for which also the < rmsd > value is at a minimum. This is

indeed the case for the higher-resolution maps (compare

the positions of the square symbols in Figures 4A and

4B). At lower resolutions, the curves become noisy. This

happens as the number of structure factors is smaller at

lower resolutions, and, thus, the statistics for the free R

value becomes much less significant. For example, for
12, December 2007 ª2007 Elsevier Ltd All rights reserved 5



Figure 4. Use of Crossvalidation Data

Set to Determine the Optimum Value of

the g Value

(A and B) The crossvalidation data set is

formed by selecting at random 10% of the

structure factors that were omitted from the

calculation of the density map used to guide

the sampling simulations. These omitted struc-

ture factors are then used to calculate a free R

value (free R) that measures the fit between the

structure factors calculated from the sampled

structure and the omitted structure factors.

The curves of < rmsd >, the rmsd averaged

over the last 500 steps of each refinement sim-

ulation, versus g differs from those of free R

against g, but the minimum of free R at a partic-

ular resolution occurs at a g value that is close

to that which minimizes the < rmsd > value.

This provides an approximate method to deter-

mine the optimum g value.

(C and D) In panels (C) and (D), we show how

noise effects the variation of < rmsd > with

the g parameter. Adding Gaussian noise with

a standard deviation of 40� to the phases of

the structures factors has a very small effect

at all resolutions. We have marked the mini-

mum values of either < rmsd > or free R by

square symbols to better show the correspon-

dence of the positions.
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the 3 Å map there are 24,741 reflections, whereas for the

20 Å map there are only 105. Thus, for crossvalidation of

the 20 Å data, only 11 reflections were used, causing sig-

nificant statistical noise. This can be quantified by com-

puting the correlation between rmsd and free R; the aver-

age correlation for the simulations at dmin = 3 to 8 Å was

0.928 and for the 10–20 Å was �0.06. However, the min-

imum of the free R value remained to be a good predictor

of the lowest rmsd for all resolutions, which is shown by

the fact that the overall correlation between the g values

at the lowest free R value and the lowest rmsd is 0.70.

Complete crossvalidation might be used to reduce the

noise in the free R values (Brunger, 1993).

Noise
To test our method under more realistic conditions, we

added noise to our synthetic data sets. In X-ray crystallog-

raphy, the phases of the structure factors have higher un-

certainties than their amplitudes, so we added Gaussian

noise with a width of 40� to the phases and computed

a density map from these modified phases and the original

amplitudes. We are aware that for electron microscopy,

a different noise model could be more realistic. We per-

formed simulations (again for 7 values of dmin and 11 dif-

ferent g values) by using the noisy density maps as a target

but otherwise the same simulation parameters as in the

previous simulations. The results, shown in Figures 4C

and 4D, can be directly compared to the noise-free simu-

lations (Figures 4A and 4B). The < rmsd > values obtained

with noise are only slightly larger, 0.22 Å (+12%) on aver-

age, than without noise. The best structures obtained from

the simulations at dmin ranging from 3 to 10 Å, again, have
6 Structure 15, 1–12, December 2007 ª2007 Elsevier Ltd All right

STFODE 1
an rmsd below 1.5 Å (gray-shaded area). Noise increases

the < rmsd > of the best structure at dmin = 3 Å by only

0.12 Å (from 0.69 Å to 0.81 Å). Overall, the resulting struc-

tures are very similar to the ones obtained from the noise-

free simulations, which means our method is robust

against the applied noise.

The previously mentioned barrier effect at high resolu-

tion is even more pronounced in the presence of noise:

the simulation at dmin = 3 Å yields an < rmsd > of 3.4 Å

for g = 0, which is even higher than the 3.2 Å rmsd

obtained from the simulation at dmin = 20 Å (Figure 4C).

This is expected as the noise creates more and/or higher

barriers especially in the high-resolution density maps and

further hinders convergence. The free R value is higher for

the simulations with noise than for the noise-free simula-

tions; it increased on average by 0.04. In spite of these dif-

ferences, the g values for which the free R value is minimal

are very good predictors of the g values for which < rmsd >

is minimal.

Radius of Convergence
As we have shown, our method works well when starting

from the open conformation of the Ribose-binding protein.

To assess the radius of convergence of our approach, we

generated increasingly difficult test cases. Specifically, we

manually opened the open conformation and generated

16 additional conformations with increasing interdomain

angles from 45� and 137� and corresponding rmsds be-

tween 5.4 and 12.7 Å. Three of these conformations are

shown in Figure 5 (top). Sampling simulations were started

from each deformed structure for the same seven cross-

validated density maps calculated at different resolutions,
s reserved
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Figure 5. Radius of Convergence of

DireX as a Function of Density Map

Resolution

The open conformation of RBP (PDB ID: 1URP)

has been manually opened to different extents

to yield 18 structures with an interdomain angle

of between 41� and 137� and corresponding

rmsd values between 4.3 Å and 12.7 Å, with re-

spect to the closed conformation (PDB ID:

2DRI). Three of these different starting struc-

tures (A, B, and C) with rmsd values of 5.4,

7.2, and 12.7 Å, respectively, are shown. The

final rmsd value after the sampling simulation

is plotted against the initial rmsd value. Points

that lie below the diagonal (dashed line) corre-

spond to starting structures that have been

moved closer to the correct structure by

sampling simulations against the density map

computed to the particular resolution.
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as described above. A g value of 0.8 was used for all sim-

ulations. Figure 5 (bottom) shows the final rmsd after the

sampling simulation versus the initial rmsd of the starting

model. Each point is the result of a 1000 step sampling

simulation. The fact that all points lie below the diagonal

(dashed line) shows that all starting structures were

moved closer to the correct (closed) structure. All starting

structures with an initial rmsd below about 10 Å could be

significantly improved at all tested values of dmin. For ex-

ample, for starting structures that had an initial rmsd of

up to 10 Å, final structures below 1.5 Å rmsd (gray-shaded

area) were obtained at dmin = 3 Å, and below 2 Å rmsd at

dmin = 10 Å.

Rigid-Body Refinement
A simple and popular way to reduce the dimensionality of

the refinement problem is to manually define rigid do-

mains. Here, we use this approach for comparison with

our method. We used the program Dyndom (Hayward

and Berendsen, 1998) to break the protein into two

domains A and B. Dyndom takes two structures and

determines rigid domains by comparing and clustering
Structure 15, 1–
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fragments of these two structures. The obtained domain

decomposition is an optimum solution that is usually not

accessible in a real application since the target structure

would be unknown. The obtained refinement quality is,

therefore, an upper limit of what is achievable by rigid-

body refinement. According to Dyndom, domain A com-

prises residues 3 to 100 and 238 to 262, and domain B

comprises residues 105 to 232 and 268 to 269. For the

structure refinement, we used the program CNS with the

MLHL target function and the same crossvalidation data

set as described above (see Figures 4A and 4B). The

two domains A and B were defined as rigid groups within

CNS. All rigid-body refinement calculations were per-

formed with the synthetic structure factor computed to

dmin = 3 Å.

In a first attempt, energy minimization starting from

the open structure (1URP) did not yield a good solution:

the obtained R and free R values were 0.579 and 0.558,

respectively, and the resulting rmsd value was high at

1.82 Å. In the next step, a simulated annealing refinement

was performed by the standard annealing protocol of

CNS, which started at a temperature of 2500 K and
12, December 2007 ª2007 Elsevier Ltd All rights reserved 7
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decreased it by 25 K every six torsional molecular dynam-

ics steps; this yielded a much better structure with R and

free R value of 0.189 and 0.174, respectively, and a rmsd

value of 0.24 Å. To test the radius of convergence of the

rigid-body refinement approach, we used the previously

described series of manually opened starting structures.

Interestingly, simulated annealing failed even for the least

deformed open model, which had an interdomain angle of

45� and a rmsd of 5.4 Å to the closed structure. A ten times

slower cooling protocol did not improve the resulting

structure either. Thus, for the case at hand, the radius of

convergence for rigid-body refinement with CNS is

much smaller than for the method presented here.

Implementation of DEN Restraints in Reciprocal
Space Simulated Annealing Refinement
In X-ray crystallography only amplitudes are measured:

the phases are unknown and must be determined indi-

rectly. The fastest and most popular method used to solve

the phase problem is molecular replacement. If at least

part of the structure is already known, or can be modeled

by homology modeling, useful approximate phases can

potentially be reconstructed from this model. The success

of this method strongly depends on the similarity between

the starting model and the correct structure. We test here

if application of DEN is beneficial to commonly used recip-

rocal space refinement. Synthetic structure factor ampli-

tudes in the resolution range 100 to 3 Å were computed

from the closed structure. The open model, which has

a rmsd of 4.3 Å to the closed structure, was taken as the

starting (replacement) model to start simulated annealing

refinement.

We implemented the DEN into CNS at the script level, as

described in Experimental Procedures. For crossvalida-

tion, 10% of the amplitudes were defined as the test set

and were not used for the refinement. To assess the im-

pact of the DEN on simulated annealing refinement, two

simulated annealing refinement simulations were per-

formed, one with and one without the DEN restraints.

For the simulation with DEN, a g value of 0.8 and a k value

of 0.05 were used. In both simulations, the starting tem-

perature was 2000 K, which was lowered by 10 K every

six torsion-angle molecular dynamics steps (the molecular

dynamics time step was set to 4 fs). The refinement with-

out DEN did not converge to the target structure in that the

resulting structure had an rmsd of 3.3 Å to the correct

(closed); the R and free R values were 0.57 and 0.58, re-

spectively. In contrast, using the DEN restraints yielded

a much better structure with an rmsd of 0.6 Å, the R and

free R values of 0.27 and 0.26, respectively.

Conclusions and Future Work
We presented here an approach for flexible fitting and re-

finement of protein structures into low-resolution density

maps obtained by X-ray crystallography or electron mi-

croscopy. Our approach consists of two components:

the deformable elastic network (DEN) model and the ge-

ometry-based sampling algorithm; both are implemented

in the program DireX. Our conformational sampling algo-
8 Structure 15, 1–12, December 2007 ª2007 Elsevier Ltd All right
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rithm efficiently generates an ensemble of structures that

fit a density map. In the framework of low-resolution data,

the DEN acts as a knowledge-based restraint that helps to

overcome the over-fitting problem and prevents that the

structural ensemble contains over-fitted conformations.

DireX can also apply general distance restraints, which

makes it also possible to use data obtained from FRET

or NMR experiments.

Furthermore, we showed that reciprocal space refine-

ment methods benefit from the application of DEN re-

straints. In particular, we showed that the combination

of torsion-angle simulated annealing refinement as imple-

mented in CNS and DEN increases the radius conver-

gence. The simulated annealing helps to improve sam-

pling efficiency by accelerating the crossing of energy

barriers while the DEN restraints prevent that the protein

explores conformations that are too far from the starting

structure, which is typically a homology model.

In addition to fitting protein structures into low-resolu-

tion density maps, we expect that our method is able to

solve difficult molecular replacement problems, where

the replacement model would be relatively far away from

the correct structure. The phases obtained from such

a model would yield heavily distorted density maps

when combined with the observed structure factor ampli-

tudes, which poses a considerable challenge to structure

refinement. Our conformational sampling algorithm could

be particularly powerful in this respect since it has been

shown to be robust for noise-added density maps. An im-

portant next step is the application of our approach to

structure refinement with real data sets, which is currently

in progress.

EXPERIMENTAL PROCEDURES

Test System

The Ribose-binding protein (RBP) (Figure 1) is used here as a test case

since it is known to undergo a large conformational change, and sev-

eral high-resolution crystal structures have been solved. We chose an

open and a closed structure from the PDB, 1URP and 2DRI, respec-

tively, and removed any nonprotein atoms from the PDB file. These

structures each comprise 271 residues (2465 atoms) and differ by an

all-atom root mean square deviation (rmsd) of 4.3 Å. Synthetic density

maps at seven different resolutions (dmin = 3, 4, 6, 8, 10, 15, and 20 Å)

have been computed from the closed structure and serve as our

‘‘experimental’’ data. In all simulations, the starting structure was

superimposed on the target structure (2DRI) minimizing their rmsd.

However, our method is insensitive to the initial position, as tested

in trial simulations with an initial center displacement of 10 Å at

dmin = 10 Å and DEN restraints: the structure refines to an rmsd of

1.17 Å to the target structure, compared to 1.15 Å when the center

position of initial structure was superimposed on that of the target

structure.

Conformational Sampling Algorithm

Our conformational sampling algorithm, which is outlined in Figure 6A,

is based on the CONCOORD algorithm (de Groot et al., 1997) and

generates a random walk through the sterically accessible conforma-

tional space. The original CONCOORD program was developed to

sample conformations around a given structure (usually a crystal struc-

ture). The general strategy of CONCOORD is to generate a network of

distance restraints from an input structure and to efficiently generate

an ensemble of structures that obey these restraints. We use an
s reserved
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Figure 6. Implementation of DEN

(A) Diagram showing the implementation of DEN in combination with

the CONCOORD algorithm in the program DireX.

(B) Diagram showing the implementation of DEN in reciprocal space

simulated annealing refinement.
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all-atom description of the protein, except for nonpolar hydrogen

atoms, which are united with their heavy atom binding partner. The

CONCOORD distance restraints are represented as a list of allowed

distance intervals. This list contains two different types of restraints:

(1) topological restraints, which ensure that the model retains correct

stereochemistry, e.g., bond lengths and planar groups, and (2) van

der Waals restraints, which prevent atom overlaps and set an upper

limit for the allowed conformational change. There are typically about

ten times more CONCOORD restraints than atoms. In a next step, the

coordinates of the structure are randomly perturbed by using a Gauss-

ian distribution with a width of 0.5 Å. Then, the coordinates are itera-

tively corrected to fulfill the CONCOORD restraints and to eventually

produce a new structure. This correction cycle is the core of the CON-

COORD algorithm, which traverses the list of CONCOORD restraints in

a random order, and corrects those distances that lie outside their

allowed interval. For each violated restraint, the two corresponding

atoms are moved along their interatomic vector toward a target dis-

tance, which is randomly picked from within the allowed interval of
Structure 15, 1–
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the particular restraint. Depending on the initial perturbation, usually

less than 100 complete correction cycles are sufficient to correct all

CONCOORD restraints.

Once the structure eventually fulfills all CONCOORD restraints, the

next structure cycle is entered by calculating new CONCOORD re-

straints from this new structure. However, if the structure does not

converge within 500 correction cycles, a new attempt is made

with the same CONCOORD restraints, but with different random per-

turbations. Without any DEN restraints or forces derived from an

electron density map, the typical conformational change of the Ri-

bose-binding protein achieved in one structure cycle is about 0.2 Å,

and its computation takes about 0.7 s on a single Intel Pentium 3.0

GHz CPU.
Stochastic Gradient of an Electron Density Map

A density map, rmodelð x!Þ, is calculated from the current model at the

beginning of each structure cycle (Figure 6A). The goal is to refine

the model structure such that rmodelð x!Þ becomes as similar to the ex-

perimental density rexpð x!Þ as possible. In X-ray crystallography,

rexpð x!Þ is obtained with a resolution cutoff (dmin) in reciprocal space.

We calculate the model density rmodelð x!Þ, therefore, by convoluting

the structure with a kernel function that is the Fourier transform of a hol-

low sphere, as described in Chapman (1995). This choice of the kernel

function is most appropriate for applications to X-ray crystallographic

data. However, for electron microscopy data, other kernel functions

might be more suitable. The densities rmodelð x!Þ and rexpð x!Þ are

shifted and scaled to have a mean value of 0 and a standard deviation

of 1, which yields ~rmodelð x!Þ and ~rexpð x!Þ. Traditional real-space refine-

ment approaches would typically minimize a pseudoenergy

Er = 1� CC, where CC is the correlation between ~rmodelð x!Þ and

~rexpð x!Þ, given by:

CC =

P
ijk

~rmodelð a!ijkÞ~rtargetð a!ijkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijk

ð~rmodelð a!ijkÞÞ2
P
ijk

�
~rtargetð a!ijkÞ

�2
r (1)

where a!ijk are the three-dimensional coordinates of the grid points of

the density map. Instead, we take an approximate, stochastic ap-

proach, which is more efficient and is expected to be more robust

with noisy maps. The rationale is to move atoms into regions where

the model density does not provide enough density and to push atoms

out of regions where the model density is too high. To achieve this, we

consider the difference density:

rdiffð x!Þ= ~rexpð x!Þ � l~rmodelð x!Þ (2)

which is computed before the coordinate perturbation step and is

kept fixed during the correction cycles. The optimal scaling factor l

is found to be 0.6 independent of resolution, and this parameter is

not expected to be problem dependent. Each atom is moved during

each CONCOORD correction cycle by adding a vector g.i determined

by:

g
.

i = vðscÞ
1

12

X12

j = 1

rdiffðr
.

jÞ
ðr.j � x.

i
Þ

jr.j � x.i j
(3)

where r.j are random positions taken from an isotropic Gaussian distri-

bution with a width of 2 Å around the atom position x.i. The value

rdiffð r!jÞ is set equal to the value of rdiff at the closest grid point.

Thus, g.i is an average over random directions weighted by rdiff and

therefore points in the direction of higher rdiff values. The scaling fac-

tor, vðscÞ, depends on the correction-cycle step, sc, and is made to

decrease linearly from 1 to 0 during the first 90 correction cycles;

this allows the structure generation to converge.

In contrast to calculating the analytical gradient of Er, which is very

sensitive to noise, our approach incorporates information about the

surrounding of an atom position to determine its move step g.i. Equa-

tion 3 in fact computes an approximation to the center of mass of the
12, December 2007 ª2007 Elsevier Ltd All rights reserved 9



Figure 7. Illustration of DEN for an

Example with Two Atoms

The elastic network potential is represented by

a spring (orange) between two atoms (black

balls) separated by a distance of dijðnÞfor the

atom pair (i, j) at sampling step n. The density

map contours are represented by blue isocon-

tours. The energy terms involved are depicted

in the diagrams on the right. The current equi-

librium distance d0
ij ðnÞof the DEN potential,

E
ðnÞ
DEN, can change at each sampling step n.

The blue curve shows the rugged pseudoe-

nergy Er (see Experimental Procedures), which

is minimal for the best fit of the model density to

the target density map. At the start of the sam-

pling simulation process, the distance of the

atoms d0
ij ð0Þ in the starting model is at the

minimum of the DEN potential, E
ð0Þ
DEN (dashed

orange line). As the elastic network deforms

by changing the equilibrium distance d0
ij ð0Þ to

d0
ij ðnÞ, the DEN potential, E

ðnÞ
DEN, also changes

(solid orange line). (A) Three steps (n, n+1,

and n+2) of a sampling simulation are shown

for the parameter g = 0.5. In the starting model,

the two atoms are close to each other. During

the sampling simulation, the atoms are pulled

into higher density regions. The DEN potential

adapts to this force up to an extent that is con-

trolled by g (see 5 in Experimental Procedures).

Panel (B) shows the final converged states of

three different sampling simulations for differ-

ent g values (0.1, 0.5, 0.9). The larger the value

of g, the more the DEN is able to adapt to the

forces imposed by the density map.
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difference electron density weighted by a Gaussian distribution around

the given atom.
Deformable Elastic Network

The deformation elastic network (DEN) potential or ‘‘restraint,’’ which is

key to the present approach, is defined by

EDENðnÞ= k
X

pairs i; j

�
dijðnÞ � d0

ij ðnÞ
�2

(4)

where dijðnÞ is the distance between atom i and j at structure-cycle

number n, d0
ij ðnÞ is the corresponding equilibrium distance, and k is

the force constant, which typically is 5 kcal/(mol Å2). As our network

is deformable, the equilibrium distances d0
ij ðnÞ of the elastic network

are not constant but instead change after each structure cycle. A list

of 5000 DEN harmonic distance restraints between random atom pairs

having a distance between 3 and 12 Å (which excludes bond lengths

and bond angles) is created from the initial structure (Figure 6A). The

DEN restraints are applied by traversing the list of restraints in random

order during each correction cycle and moving each pair along the in-

teratomic vector closer to the equilibrium distance by using a step size

proportional to dijðnÞ � d0
ij ðnÞ. In this way, the DEN move of the atoms

is similar to applying a harmonic force. Once again, the step size is also

scaled by the factor vðscÞ, as defined above. As soon as a structure ob-

tained from the correction cycle fulfills all CONCOORD restraints, the

equilibrium distances d0
ij ðnÞ of the DEN are updated with:
10 Structure 15, 1–12, December 2007 ª2007 Elsevier Ltd All righ
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d0
ij ðn + 1Þ= d0

ij ðnÞ+ k
h
g
�

dijðnÞ � d0
ij ðnÞ

�
+ ð1� gÞ

�
d0

ij ð0Þ � d0
ij ðnÞ

�i
= ð1� kÞd0

ij ðnÞ+ k
h
gdijðnÞ+ ð1� gÞd0

ij ð0Þ
i (5)

where d0
ij ð0Þ and dijðnÞ are distances defined above (Equation 4), the

damping parameter k determines the adaptation speed and is set to

be smaller than 1, typically 0.05, as determined by trial and error,

and g ˛ ½0;1� balances two contributions, an adaptation force,

k½gdijðnÞ�, and a restoring force, k½ð1� gÞd0
ij ð0Þ�, back to the initial equi-

librium value d0
ij ð0Þ. Figure 7A illustrates this procedure by using

a simple two-dimensional example. The adaptation term allows the

DEN to slowly follow the structural change so that if a DEN restraint

is distorted by forces derived from the density map, it can adapt to

these forces by changing the particular equilibrium value.

The restoring force, k½ð1� gÞd0
ij ð0Þ�, ensures that the equilibrium dis-

tance of the elastic network is pulled back to its initial value when

a DEN restraint does not feel a sufficiently strong force from the density

map. Thus, the parameter g controls to which degree the structure can

be refined to the experimental data, which is shown in Figure 7B. The

more experimental information is available, the closer to 1 should g be.

In extreme cases, g should be 0 for no data and 1 for high-resolution

data, which completely define the structure. We discuss below how

to find an estimate of the optimal g value by using crossvalidation.

Note that the effect of g also depends on the step size of the conforma-

tional sampling algorithm and the scaling of the gradients derived from

the density map. The computation time for one structure cycle,
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including both DEN restraints and forces from the electron density

map, is about 2.5 s. The method is implemented in the program DireX,

which will be made available through the SimTK website https://simtk.

org/home/direx/.
Implementation of DEN Restraints in Reciprocal

Space Refinement

The DEN approach has been implemented into the CNS (Brunger et al.,

1998) software package by using a modified task file based on the

standard CNS simulated annealing task (‘‘anneal.inp’’). Figure 6B

shows a schematic overview of the implementation. N atom pairs

that are within a distance range of 3 to 12 Å in the starting structure

are randomly selected, where N is the number of atoms. These atom

pairs define the list of DEN restraints. The DEN pairs do not include

bonds or bond angles, which are restrained in CNS. The DEN restraints

are defined as harmonic NOE restraints in CNS. During the simulated

annealing calculation, the temperature is lowered by 10 K every six

steps of torsional-angle molecular dynamics. At the same time, the

distances between the DEN pairs dijðnÞ are calculated, and the DEN

restraints are updated with Equation 5.
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